

BUNKER LEVY SCHEMES AND THEIR IMPACT ON THE COMPETITIVENESS OF SHORT SEA SHIPPING

VASILEIOS KOSMAS

(BSc Economics, MSc Marine Transport with Management, Ph.D. Candidate)

Prof.Dr. MICHELE ACCIARO

KÜHNE LOGISTICS UNIVERSITY HAMBURG, GERMANY

VASILEIOS.KOSMAS@THE-KLU.ORG

NEWCASTLE, 11/11/2016

RESEARCH BASED ON...

2 papers:

1) Presented at SCC2015 entitled "Bunker levy schemes for GHG emission reduction in international shipping"

2) New work

^{00L} NECESSITY FOR FURTHER EMISSION MITIGATION ACTIONS

- Inadequacy of existing measures
 - Emission Control Areas (ECAs)
 - Energy Environmental Design Index (EEDI)
 - Ship Energy Efficiency Management Plan (SEEMP)
- Market Based Measures: the new solution?
 - (Maritime) Emission Trading Scheme
 - Bunker Levy Scheme

SSS: high competitive environment

ECAs = operational cost increase

Bunker levy schemes = modal shift ?

AIM OF THE RESEARCH PAPER

- Effect of this regulatory regime on the competitiveness of SSS against road transportation (modal shift).
 - a unit tax per ton of fuel
 - an ad valorem tax; as percentage of fuel prices

METHODOLOGY

- Equilibrium in shipping; interaction among the four markets
- Application of the cobweb theorem to the shipping industry
- Binary Choice Model

ASSUMPTIONS

New order for ships at period t according to Luo et al.(2009)

$$\begin{split} N_{t=} \, n \times \Pi_t \\ n= \mbox{ average proportion of profit accounting for new vessel purchase} \\ \Pi= \mbox{ Profit }, \end{split}$$

$$\Pi_t = \mathsf{P}_t \mathsf{W}_t \ -\mathsf{F}_t \ \Psi_t$$

P=freight rates (\$/TEU), W= TEUs carried, F=fuel costs

 $F_t = \rho_t f_t \lambda_t S_t^3$

$$\Psi_t = \frac{W_t * d_t}{H_t * S_t * \rho_t}$$

 ρ =operating time at sea (hours), f=fuel price (\$/ton), λ =coefficient of ship's energy efficiency, S= (knots) is average speed. Ψ = no of ships required, d= route distance (nautical miles) and H is ship's average capacity (TEU)

Based on the cobweb theorem

For the unit tax scheme

 $\Delta Z_{t} = \mathbf{n}(\mathsf{P}_{t-\theta}\mathsf{W}_{t-\theta} - (\mathsf{OC}_{t-\theta} + \rho_{t-\theta}(\mathsf{f}_{t-\theta} + \mathsf{TP})\lambda S_{t-\theta}^{3})\Psi_{t-\theta})$ $\Delta \mathsf{P}_{t} = \delta(\Delta \mathsf{W}_{t} - \varphi\Delta Z_{t}) = \delta\Delta \mathsf{W}_{t} - \delta\varphi \mathsf{n}(\mathsf{P}_{t-\theta}\mathsf{W}_{t-\theta} - (\mathsf{OC}_{t-\theta} + \rho_{t-\theta}(\mathsf{f}_{t-\theta} + \mathsf{TP})\lambda S_{t-\theta}^{3})\Psi_{t-\theta})$

For the *ad valorem* scheme

 $\Delta Z_t = n(P_{t-\theta}W_{t-\theta} - (OC_{t-\theta} + \rho_{t-\theta}f_{t-\theta}(1+VP)\lambda S_{t-\theta}^3)\Psi_{t-\theta})$

 $\Delta P_{t} = \delta(\Delta W_{t} - \varphi \Delta Z_{t}) = \delta \Delta W_{t} - \delta \varphi n(P_{t-\theta}W_{t-\theta} - (OC_{t-\theta} + \rho_{t-\theta}f_{t-\theta}(1+VP)\lambda S_{t-\theta}^{3})\Psi_{t-\theta})$

 ΔW =change in cargo transported, ΔZ =change in fleet capacity, $\delta > 0$ =freight adjustment factor on the basis of demand and supply alterations, $\phi > 0$ (constant)=average fleet capacity utilization rate.

A DYNAMIC ECONOMIC DISCRETE CHOICE MODEL

$$P_{j} = \exp(V_{j}) / \sum_{j=r,s} \exp(V_{j}) = 1/(1 + \exp(V_{r} - V_{s}))$$
$$U_{r} = V_{r} = \theta_{r1} x_{r1} + \theta_{r2} x_{r2} + \theta_{r3} x_{r3}$$

$$U_{s} = V_{s} = \theta_{s1} x_{s1} + \theta_{s2} x_{s2} + \theta_{s3} x_{s3}$$

x _{j1}	demand	
x _{j2}	speed	
xj ₃	freight rates	

For the unit tax scenario

 $Us=\theta_{s1}x_{s1}+\theta_{s2}x_{r2}+\theta_{s3} (\delta(\Delta X_t - \varphi \Delta Z_t) = \theta_{s1}X_t+\theta_{s2}S_t + \theta_{s3} (\delta\Delta Xt - \delta\varphi n(P_{t-\theta}X_{t-\theta} - \rho_{t-\theta}(f_{t-\theta}+T)\lambda S_{t-\theta}^3 + \theta_{t-\theta}) + P_{t-1}))$

For the ad valorem scenario

$$\begin{split} & \mathsf{Us} = \theta_{s1} x_{s1} + \theta_{s2} x_{r2} + \theta_{s3} (\delta(\Delta X_t - \varphi \Delta Z_t) = \theta_{s1} X_t + \theta_{s2} S_t + \theta_{s3 *} (\delta \Delta X_t - \delta \varphi n(\mathsf{P}_{t-\theta} X_{t-\theta} - \rho_{t-\theta} (f_{t-\theta} X_{t-\theta} (f_{t-\theta} X_{t-\theta} - \rho_{t-\theta} (f_{t-\theta} X$$

Scenario for analysis

Xs _{t-1}	1950000 TEU
d	750 nm
S	12 knots
Н	2000 TEU
Fuel price (\$/t)	300 or 600
θ _{s1}	0.00003
θ _{s2}	0.0055
P _{t-1}	800 \$/TEU
λ	0.0012
θ _{s3}	-0.003
δ	0.00894
n	0.000034
φ	42.27
θ _{r1}	0.00001
θ _{r2}	0.0045
θ _{r3}	-0.002
X _r	1500000 TEU
S _r	43 miles/hour
X _{r3}	1330 \$
X _{st}	2200000 TEU
P _{t-0}	900 \$/TEU
X _{t-θ}	1850000 TEU

THE KLU

KÜHNE LOGISTICS UNIVERSITY

AD VALOREM SCHEME

Tax percentage (%)	Modal shift percentage (%)		
	Low fuel prices (300\$/t)	High fuel prices (600\$/t)	
2	0.3	0.6	
5	0.7	1.4	
10	1.4	2.9	
15	2.2	4.3	
20	2.9	5.7	
30	4.3	8.6	
40	5.7	11.4	

Modal shift for the ad valorem scheme

KÜHNE LOGISTICS UNIVERSITY

UNIT TAX SCHEME

Tax amount (\$/t)	Modal shift		
	Low fuel prices (300\$/t)	High fuel prices (600\$/t)	
5	0.2	0.2	
10	0.5	0.5	
20	0.95	0.95	
40	1.9	1.9	
50	2.4	2.4	
80	3.8	3.8	
100	4.8	4.8	
120	5.7	5.7	
150	7.2	7.2	
200	9.6	9.6	
250	11.9	11.9	

Modal shift for the unit tax scheme

CONCLUSION

First attempt to model modal shift from SSS to road in case of bunker levy scheme enforcement

Ad valorem ______ SSS´s Utility decrease Unit tax scheme _____ Modal shift

Policy implications: Unit tax prevents uncertainty

Future steps of this research: Sensitivity analysis of variables, Effect on Social Welfare after modal shift occurrence.

Thank you

Questions?